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a b s t r a c t 

In this paper, we address one specific video retrieval problem in terms of human face. Given one query 

in forms of either a frame or a sequence from a person, we search the database and return the most 

relevant face videos, i.e., ones have the same class label with the query. Such problem is very challenging 

due to the large intra-class variations and the high request on the efficiency of video representations in 

terms of both time and space. To handle such challenges, this paper proposes a novel Deep Video Code 

( DVC ) method which encodes video faces into compact binary codes. Specifically, we devise an end-to- 

end convolutional neural network (CNN) framework that takes face videos as training inputs, models each 

of them as a unified representation by temporal feature pooling operation, and finally projects the high- 

dimensional representations of both frames and videos into Hamming space to generate binary codes. 

In such Hamming space, distance of dissimilar pairs is larger than that of similar pairs by a margin. To 

this end, a novel bounded triplet hashing loss is elaborately designed, which takes all dissimilar pairs into 

consideration for each anchor point in a mini-batch, and the optimization of the loss function is smoother 

and more stable. Extensive experiments on challenging video face databases and general image/video 

datasets with comparison to the state-of-the-arts verify the effectiveness of our method in different kinds 

of retrieval scenarios. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

In the last decades, with the great popularization of video 

ecording devices and rapid development of the Internet tech- 

iques, massive video data are being created, stored, shared and 

ransmitted every day. Meanwhile, the explosive increase of such 

ata also leads to many potential applications in the fields of com- 

uter vision and pattern recognition, such as semantic video in- 

exing and retrieval [1–3] , film character identification [4] , video 

ction recognition [5] , person re-identification [6,7] , near-duplicate 

r similar video retrieval [8,9] , etc. Amongst the huge amount of 

ideos, a substantial portion of them are human-centered. There- 

ore, a typical scenario in our daily life could be that given one 

uery of a particular person, retrieve the shots containing him or 

er [10] . Fig. 1 shows a case of the face video retrieval problem,

e input one face frame or sequence as query, inspect each se- 

uence in the database and return the ones which have the same 

lass label with the query. Such research area is very promising 
∗ Corresponding author at: Key Laboratory of Intelligent Information Processing of 
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hat we can find many real-world applications, such as ‘intelligent 

ast-forwards’ - where the video jumps to the next shot containing 

he specific actor, retrieval of all the shots containing a particular 

amily member from thousands of short videos, and locating and 

racking criminal suspects from masses of surveillance videos [11] . 

While face video retrieval is in great demand, there still exists 

any challenges to be handled. As shown in Fig. 1 , the video data

sually have large intra-class variations and low image quality in- 

uenced by illumination, pose, expressions, resolution and occlu- 

ion. Fortunately, we can obtain multiple frames of one subject si- 

ultaneously owing to the sequential characteristics of video data. 

n this way, complementary information from different frames is 

rovided. Therefore, dealing with each video as a whole and trying 

o aggregate a comprehensive representation for the video would 

e more favorable. To address this issue, a typical class of video- 

ased face recognition methods [12–21] put the sequential dy- 

amic information of video aside, and simply treat the video as 

 set of images ( i.e . frames) and then formulate the problem as 

mage set classification. Given hand-crafted image features, these 

ethods model image set as linear/affine subspace [12–15] , nonlin- 

ar manifold [16,17] , or second-order statistic [18,19] . While these 

ethods can capture the intrinsic geometrical structure of video 

epresentations from different perspectives, the hand-crafted fea- 

https://doi.org/10.1016/j.patcog.2020.107754
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
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Fig. 1. Illustration of face video retrieval problem and the motivation of our method. The symbols Q, A, B and C denote four face clips, and colors surrounded them mean 

different subjects. Given the query Q (Q can be a sequence here or only a frame), we search the database to find the most relevant face clips according to their similarity to 

Q. Large variations of the video data can be found here, e.g. variation of illumination in B, pose in Q, expression in C and occlusion in A. Our method aims to project them 

into a discriminative Hamming space where distance of dissimilar pairs is larger than that of similar pairs by a margin. 
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m

ures used in most of them cannot well cope with the challenging 

ntra-class variations. Besides, these methods usually involve com- 

licated matrix operations (e.g. Gaussian kernel, matrix logarithm, 

tc), which are time and memory consuming and thus not be quite 

ualified for large scale and real-time retrieval task. To overcome 

uch limitations, our conference work [22] makes an early attempt 

o devise an end-to-end CNN architecture to learn image features 

nd effective video modeling jointly for video-to-video retrieval 

ask. In this paper, we further improve the previous video model- 

ng module and extend the framework to more retrieval scenarios. 

To be specific, in the video modeling procedure, we propose 

wo temporal feature pooling schemes, i.e. the temporal max- 

ooling and the weighted temporal average-pooling scheme, con- 

idering the characteristics of face videos from two perspectives. 

n one hand, each frame of one video may capture only partial but 

omplementary information (e.g., faces with different pose). Since 

he activations of the convolution filter can be regarded as the con- 

dence measurements of some local concepts, when these con- 

epts only exist on one or a few frames, large activations will only 

ppear on some of these frames. Therefore, the complementary in- 

ormation can be extracted via preserving only the maximum acti- 

ation for each local concept among frames within a video. On the 

ther hand, different faces within a video can have different image 

uality (e.g., faces with different illumination), and thus lead to dif- 

erent contributions to the identification of the face. In this way, 

he video representation can be obtained via weighted average- 

ooling across frames according to their “quality” (e.g., their simi- 

arities to the class centers in this paper). 

Another challenge of current retrieval task is the high time and 

emory cost resulting from high-dimensional real-valued repre- 

entations of deep features, especially in the large scale data sce- 

arios. To handle such problem, we note that the popular hash- 

ng method for solving approximate nearest neighbor (ANN) search 

roblem is qualified for current task. In general, hashing aims to 

ransform the data in high-dimensional space to a low-dimensional 

nd binary representations, or equivalently a short code consist- 

ng of a sequence of bits [23] . Therefore, after the video modeling 

odule, we further resort to the hash learning technique to obtain 

he compact binary codes for videos and frames, which we name 

s Deep Video Code ( DVC ). 

Fig. 2 shows the framework of our method. It takes face videos 

s training inputs and extracts convolutional features for each 

rame simultaneously. In order to aggregate useful information 

rom frames and obtain a unified real-valued representation for 

t

2 
ach video firstly, we utilize either of the two aforementioned 

ideo pooling schemes. With such representations, the hashing 

odule finally generates compact binary codes for both videos and 

rames. To guide the training of such deep hashing network, vari- 

us supervised signals have been proposed, [24–26] . Among them, 

riplet loss [27] introduces the relative local ordinal embedding 

onstraints, which is more tally with the retrieval task (i.e. the goal 

f ranking). However, due to randomly sampling scheme in mini- 

atch construction, the gradients are not stable and smooth. To ad- 

ress this issue, we turn to optimize a smooth upper bound on 

he loss function inspired by a recent metric learning method [28] . 

pecifically, instead of sampling particular triplets (e.g. hard or 

emi-hard), each positive pair compares against all negative pairs 

n the batch weighted by the margin violation degree. Extensive 

valuations of video modeling, loss function, training methodolo- 

ies and comparison with the state-of-the-arts on several chal- 

enging video (face) and image datasets verify the effectiveness of 

he proposed framework for (face) video retrieval tasks in scenar- 

os of (cross-scene) video-to-video, image-to-video, video-to-image 

nd image-to-image. 

This journal paper builds on the earlier conference work [22] . 

ompared with it, this paper has made three major extensions. 

irst , we improve the inferior temporal average-pooling for video 

odeling by weighted average pooling, which is expected to 

chieve better performance for this task. Second , we generalize the 

ramework to be compatible with not only the previous video-to- 

ideo retrieval but also the more practical image-to-video, video- 

o-image and image-to-image scenario. With such new framework, 

dditional experiments in different retrieval scenarios on the more 

hallenging YouTube Celebrities and UMDFaces face video datasets, 

HMDB action video dataset, and CIFAR-10 image dataset com- 

ared with more state-of-the-arts are conducted. Third , we pro- 

ide more detailed comparisons and discussions regarding differ- 

nt loss functions, inference time and training methodologies includ- 

ng the second-order sampling scheme to alleviate the problem of 

mbalanced datasets, fine-tuning pre-trained single image model 

nd short code length model to speed up convergence and improve 

he performance of long code length video model. 

. Related work 

Our method aims to model video as a whole and reduce the di- 

ension of deep feature embedding via learning to hash. Hence, in 

his section, we review works including face video retrieval using 
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Fig. 2. Framework of the proposed DVC method. Taking face videos with their class labels as training inputs, DVC first extracts convolutional features for each frame and 

then utilizes temporal feature pooling on all frames belonging to the same video to produce video-level representation. Finally, the fully connected layers project the features 

of both videos and frames from the same high-dimensional Euclidean space into a much lower-dimensional Hamming space, using the elaborately designed upper bounded 

triplet loss function where each positive pair compares against all negative pairs in the batch weighted by the margin violation degree. 
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eal-valued representations, video based face recognition, hashing 

ethods and deep feature embedding. 

.1. Face video retrieval 

Retrieving videos of a particular person has many important 

pplications. Recently it has been attracting more and more at- 

entions on the study of such problem [10,11,29–37] . [29,30] built 

n end-to-end video shots retrieval system using several feature- 

ength films. To overcome the large variations within a video, they 

roposed a cascade of processing steps to obtain the signature 

mage as the representative of the video. However, the rich in- 

ormation involved in different frames were not used sufficiently. 

s we have discussed in Section 1 , videos provide multiple com- 

lementary frames with different information, mining such infor- 

ation helps to learn more comprehensive representation of the 

ideo. [11] thus made a progress to this research direction, which 

odels each face video as distributions of histograms and mea- 

ures them by chi-square distance. [32] further used the popular 

isher Vector (FV) [19] as the video representation and achieved 

etter retrieval performance. These pioneer works built fundamen- 

al processing pipelines and retrieval task definition on the face 

ideo data. However, they are based on real-valued video represen- 

ations on simple film data, which are not time and space efficient, 

specially in the large scale scenario nowadays. Instead, we mainly 

ocus on the deephash learning framework, which is qualified for 

he efficient retrieval task, and is expected to have potential wide 

pplications in larger scale retrieval tasks. 

.2. Video-based face recognition 

Video-based face recognition is closely related to our current 

ask considering the common form of data (i.e. face videos) they 

re dealing with. Recent years have witnessed increasing works 

n video-based face recognition. Among them, a typical class of 

ethods simply treated the problem as image set (formed by 

rames) classification and focused on modeling image set with dif- 

erent representations and measuring their similarities. Based on 

mage set modeling manners, these methods can be briefly divided 

nto three categories: subspace based [12–15] , manifold based 

16,17] and statistic based methods [18,19] . Linear/affine subspace 

ased methods assume image sets are spanned by a linear or affine 

ubspace. When the size and variations of image sets are large, 

t would be hard for subspace to model such nonlinear structure. 

o address this limitation, manifold based methods use nonlin- 
3 
ar manifold to model image sets and geodesic distance to com- 

are sets. Statistic of image sets is another alternative for non- 

inear modeling, which employ covariance [18] or Gaussian Mix- 

ure model (GMM) [19] to characterize the second-order variations 

mong images within a set. 

These early works mainly focused on effective video model- 

ng while made little effort to frame-level feature extraction by 

erely relying on hand-crafted features, which are unfavorable of 

andling challenging image variations. [20,21,38,39] thus made at- 

empts to integrate deep image feature learning and video mod- 

ling in an end-to-end neural network, and the performance are 

mproved largely, verifying the usefulness of joint learning of im- 

ge representation and feature aggregation. However, most of these 

ethods including both shallow and most deep ones usually in- 

olve complicated matrix operations (e.g. Gaussian kernel, matrix 

ogarithm, etc), which are time and memory consuming and thus 

ot be quite qualified for large scale and real-time retrieval task in 

his paper. 

.3. Hashing methods 

Benefiting from its compact representations and efficient dis- 

ance measurements compared with real-valued methods such 

s [40–42] , hashing has been widely applied in the retrieval 

rea especially for large-scale approximate nearest neighbor (ANN) 

earch problem. The early hashing studies aimed to learn hash- 

ng functions in data-independent manner, such as the pioneer- 

ng work Locality Sensitive Hashing (LSH) [43] . However, the per- 

ormance of these methods is not well when the code length is 

hort. To overcome such limitations, data-dependent methods were 

roposed to learn similarity-preserving and compact binary codes 

sing training data. Such method can be further categorized into 

nsupervised [44–47] and (semi-)supervised ones [24–26,46,48–

4] . Generally speaking, supervised methods achieve better per- 

ormance than unsupervised ones owing to strong semantic con- 

traints. Besides, the end-to-end trained deep hashing [24–26,56–

2,64] usually outperform shallow ones due to the powerful non- 

inear ability of deep neural networks. These deep hashing meth- 

ds can be briefly classified into three categories according to their 

upervised signals, i.e. point-wise [24,58] (i.e. softmax based), pair- 

ise [25,56,59,64] and triplet ones [26,57,60–62] . Review of the 

hree embedding constraints can be found in Section 2.4 . 

Recently increasing hashing methods have been proposed to 

andle the (face) video retrieval problem [1–3,22,33–37] . [33–

5] were the early works which proposed to compress face video 
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nto compact binary code by means of learning to hash. However, 

he isolation of fixed feature representation and hash coding in 

hese works limits their performance. [36,37] thus made an early 

ttempt to learn the CNN features and hashing codes jointly for 

ach frame as similarly done in the deep hashing methods for im- 

ge retrieval. Since their leaning did not make full use of corre- 

ation information provided by multiple frames, the ordinary CNN 

etwork framework seems not an optimal solution to efficient face 

ideo hashing. To overcome such limitations in face video retrieval 

roblem, our conference work [22] proposed to devise an end-to- 

nd framework to learn feature representations, video modeling 

nd binary codes simultaneously. In the following, [1–3] further 

tudied general video retrieval task with similar framework. Be- 

ides, they proposed more complicated video modeling schemes, 

.e subspace clustering in [3] , vector of locally aggregated descrip- 

ors in [1] and temporal feature fusion in [2] . Though the temporal 

eature pooling schemes used in our framework is simple, they are 

fficient and effective enough for the specific face video retrieval 

roblem. In addition to the proposed video modeling schemes, to 

nsure binary codes discriminative, we also propose to optimize a 

mooth upper bound on the triplet loss function, which is expected 

o be more stable and achieve better performance. 

.4. Deep feature embedding 

Deep feature embedding directly learns non-linear mapping 

unction from the input data to a real-valued embedding space 

ith the powerful deep neural networks and elaborately designed 

upervised signals, the final objective of which is to push dissimilar 

ata far away and pull similar data close. One of the most success- 

ul supervised loss is the softmax classification loss [65–68] . The 

oftmax loss aims at minimizing the cross entropy between im- 

ges and its belonging category label. On the one hand, traditional 

oftmax loss only considers to make features of different classes 

e separable, ignoring the generalization ability of embedding for 

nseen data. On the other hand, it measures similarities using Eu- 

lidean distance, ignoring the effects of feature norm, which may 

e not accurate. To address the first issue, [67] combines softmax 

oss with center loss which additionally contraints intra-class com- 

actness. As for the second issue, [68] and [66] constraint learned 

eatures to be discriminative on a hypersphere manifold using the 

osine distance. Though these softmax loss based methods have 

chieved remarkable success, they suffer from large scale of class 

umbers, i.e. complexity of classifiers are positively related to the 

umber of categories. 

Alternative to learn discriminative embedding is the research 

f deep metric learning based methods [27,28,69–72] . The most 

rominent loss functions are the siamese networks with con- 

rastive loss [69] and triplet loss [27] . The contrastive loss directly 

ulls samples of the same class as close as possible, and pushes 

amples of different classes far away than a margin. The intra-class 

onstraint of the contrastive loss may be too strict to be satis- 

ed, especially in the case of large scale of data. The triplet loss 

ntroduces the relative distance to relax the contrastive formula- 

ion, which allows samples to move more freely once the relative 

argin is kept. Though triplet loss is more ideal for large scale 

iscriminative space learning, the success of which is largely de- 

endent on an effective triplet sampling strategy due to the mini- 

atch training manner. Generally, samples are randomly selected 

o construct a mini-batch, leading to slow and even failed con- 

ergence since few effective triplets in the batch can provide gra- 

ients with large magnitude. To address this issue, [70] adopts 

he semi-hard negative mining scheme with the goal of finding 

egative pairs that are within the margin. [71] learns the prox- 

es as part of the network parameters to reduce the generated 

riplets number within mini-batch and thus speed up the conver- 
4 
ence of models. [72] proposes an adaptive controller which au- 

omatically adjusts the sampling hyper-parameters by monitoring 

raining performance. Different from designing an elaborately sam- 

ling scheme, [28] introduces the structured triplet loss, where 

ach positive pair compares against all negative pairs in the batch 

eighted by the margin violation degree. By doing so, the gradi- 

nts would become smoother and the model would converge more 

asily. In light of this, we introduce such structured triplet loss to 

he hash learning area which is expected to mitigate the slow con- 

ergence problem limited by the binary constraints in deep hash- 

ng [25] . 

Softmax based and metric learning based methods are two al- 

ernative supervised signals for deep feature embedding, advan- 

ages and drawbacks of them are compared and analyzed in [73] , 

eaders can make a reference to it. In the experimental section, 

e also compare some alternative designs of them in our hashing 

ramework. 

. Approach 

Our goal is to learn compact binary codes for face videos and 

rames such that: (a) each video should be treated as a whole, i.e., 

earn a single binary code for each video; (b) the binary codes 

hould be similarity-preserving, i.e., the Hamming distance be- 

ween similar faces (videos or frames) should be smaller than 

hat between dissimilar ones by a margin. To fulfill the task, as 

emonstrated in Fig. 2 , our method mainly involves two steps: 1) 

ideo modeling, which extracts frame-level features and aggregates 

hem for video-level representation, and 2) binary encoding, which 

earns the optimal binary codes for videos and frames under the 

esigned upper bounded triplet loss function. 

.1. Video modeling 

In this step, our goal is to learn a comprehensive real-valued 

epresentation for each face video firstly, using the frame-level 

NN features. One straightforward method is to extract frame-level 

eatures using a pre-trained CNN model first, and then pooling 

hem offline (e.g., by average-pooling) to obtain a unified represen- 

ation. Processing in such non-end-to-end manner mainly has two 

isadvantages. First, it separates the successive steps of frame-level 

eature extraction and video-level representation, which would 

ead to poor coupling between the two steps and thus poor perfor- 

ance. Second, it gives equal treatment to all frames, which does 

ot take full consideration of the complementary properties of dif- 

erent frames. 

To cope with video data, another widely used solution is the 3D 

onvolution Neural Network (3D CNN). As introduced in [74] , the 

asic idea of 3D CNN is stacking fixed length of video frames as a 

ube and then convolving the 3D kernels on the cube. Though 3D 

NN has the power of making use of information from multiple 

rames in videos, it is still not suitable for the face video model- 

ng. The reason is that the main goal of 3D CNN is to capture mo-

ion variation in temporal dimension and appearance information 

n spatial dimension simultaneously, which has high request on 

he capacity of the network. One embarrassed consequence would 

e that neither of the learned motion or appearance information 

s satisfactory. Besides, the temporal motion information among 

rames makes little sense to the identification of one face video, 

hile the appearance information contributes more to such prob- 

em. Therefore, as for the face video retrieval task, it cares more 

bout learning a powerful appearance information extractor and 

ogether with an effective video modeling scheme. 

To fulfill the purpose of extracting appearance information and 

odeling video jointly, we devise the end-to-end video represen- 

ation framework shown in Fig. 2 . Let F = [ f , f , . . . , f n ] be a face
1 2 
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Fig. 3. Illustrations of (a) temporal max-pooling and (b) weighted temporal average-pooling. In (a), given frame-level convolutional features, the maximum activation of 

each dimension is computed. Darker colors mean larger activations for corresponding dimensions. In (b), quality of frames within a video is measured according to their 

distance to the learned class center in the feature space. The final video representation is the weighted summation of frame-level features, where weight of each frame is 

the computed image quality. 
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ideo with n frames, where f i denotes the i th frame. We first 

btain the frame-level CNN features d i ∈ R 

p for the i th frame by 

ropagating the frame through the frontal CNN module, i.e. the 

tacked operations of convolution, pooling and ReLU non-linear ac- 

ivation. Next, these frame-level features should be aggregated to 

odel the video as a whole. To this end, we mainly design two 

emporal feature pooling schemes to model face videos. 

The first scheme is the temporal max-pooling across frames 

ithin a video shown in Fig. 3 a. Due to large variations within a

ideo, each frame may carry only partial but complementary in- 

ormation. In addition, the convolution kernel can be regarded as 

 local concept detector. Therefore when some concepts only exist 

n one or a few faces in the video, the detectors will only have

arge responses on some of these faces. Taking this into considera- 

ion, we preserve only the maximum activation for each local con- 

ept among frames within a video. To be specific, let each dimen- 

ion of d i denote the activation of one local concept, the temporal 

ax-pooling is defined as: 

 j = max (d 1 , j , d 2 , j , . . . , d n, j ) . (1) 

here v ∈ R 

p is the representation of face video F , i.e., the result of

emporal max-pooling on [ d 1 , d 2 , . . . , d n ] . v j is the jth dimension

f v . 

The second scheme is the weighted temporal average-pooling 

hown in Fig. 3 b. Since different faces within a video can have dif-

erent image quality and high-quality faces usually contribute more 

o the identification of the video than the low-quality ones, we 

hould involve more information from those high-quality frames 

hen aggregating frame-level features of a video [20,21] . To this 

nd, we utilize the cosine similarity between d i and the class cen- 

er c y F ( y F is the class label of the video F ) to measure each frame’s

uality: 

 i = 

d 

T 
i 
c y F 

|| d i || 2 · || c y F || 2 . (2) 

here s i can be used as the weight for frame i . To ensure the sum-

ation of all frame weights is 1, we further normalize the weight 

s: 

i = 

exp(s i ) ∑ n 
j=1 exp(s j ) 

. (3) 

Then we can obtain the aggregated representation of video F 

ia the weighted temporal average-pooling, defined as: 

 = 

n ∑ 

i =1 

αi d i . (4) 
p  

5 
It is noted that in Eq. (2) , the class center c y F needs to be up-

ated during training. Due to the mini-batch training manner in 

eep learning, it is inefficient and impractical to take the entire 

raining set to update the class centers in each iteration. We thus 

esort to a recent work for classification [67] , and the update of 

 th class center c k in the tth iteration is as: 

c t k = 

∑ n b 
i =1 

δ(y i = k ) · ( c t 
k 

− d i ) 

1 + 

∑ n b 
i =1 

δ(y i = k ) 
, 

c t + 1 
k 

= c t k − β�c t k . (5) 

here n b is the total number of frames in a mini-batch, y i is the

lass label of the i th frame and the scalar β controls the updating 

tep of the centers. 

After training, class centers are fixed. Given a new video with- 

ut label, we compute the similarities between frames and class 

enters, and take the most similar center via hard-voting to mea- 

ure frames’ quality in Eq. (2) . 

.2. Binary encoding 

Due to the demand for time and space efficiency of learned rep- 

esentation for large scale retrieval task, the high-dimensional real- 

alued features introduced above are not qualified. To address such 

roblem, we propose a hashing method with improved triplet loss 

unction. By doing so, the high-dimensional representation is fur- 

her projected into a much lower-dimensional Hamming space. 

To guarantee the similarity-preserving power of learned hash- 

ng functions, several kinds of objectives for deep hashing have 

een proposed in [25,26,58,64] . Among them, the triplet ranking 

oss aims to preserve relative rank order among datums, which is 

esirably consistent with the objective of retrieval task. The triplet 

onstraints can be described as the form: “image i is more similar 

o image j than to image k ” [26] . When the dataset is challenging, 

uch constraints are easier to be satisfied than point-wise [58] or 

airwise constraints [25,64] . Apart from that, such form of triplet- 

ased relative similarities are easier to be constructed without re- 

uest of detailed category-level labels (e.g., for two images with 

ultiple attributes/tags, simply count the number of common at- 

ributes/tags as the similarity metric between them). For better un- 

erstanding of the triplet ranking loss in hash learning, let i, j, k be 

hree samples and i is more similar to j than to k, our goal is to

earn a Hamming space where the relative similarity among sam- 

les should be preserved, as illustrated in the loss module of Fig. 2 .
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w

therwise, penalty should be imposed on them, defined by: 

 i, j,k = max (0 , m + D h (b i , b j ) − D h (b i , b k )) . 

s.t. b i , b j , b k ∈ { 0 , 1 } r (6) 

here D h (·) denotes the Hamming distance between two binary 

ectors and m > 0 is a margin threshold parameter. b i , b j and b k 

re the r-bit binary codes of sample i, j and k, respectively. 

In general, the whole framework is trained with the SGD al- 

orithm in a mini-batch. Due to the random construction of the 

riplets in the batch, a substantial portion of them contribute little 

o the convergence of the network during each iteration as they 

lready satisfy the triplet constraint as described in Eq. (6) or their 

oss is quite small. To cope with this issue, it is better to make use

f “difficult” triplets, i.e., given a pair of similar samples, we ac- 

ively find the dissimilar neighbor closest to them in current Ham- 

ing space. Based on this, we rewrite Eq. (6) and give the overall 

oss function per batch as 1 : 

J = 

1 

2 | ̂  P | 
∑ 

(i, j) ∈ ̂  P 

max (0 , J i, j ) , 

 i, j = max 

(
max 
(i,k ) ∈ ̂  N 

{ m − D h (b i , b k ) } , 

max 
( j,l) ∈ ̂  N 

{ m − D h (b j , b l ) } 
)

+ D h (b i , b j ) . 

s.t. b i , b j , b k , b l ∈ { 0 , 1 } r (7) 

here ̂ P and 

̂ N are the set of positive and negative pairs (i.e., sim- 

lar and dissimilar pairs) in the training mini-batch, respectively. 

ote that here we allow both sample i and j play the role of an-

hor point in the triplet structure in order to make full use of sam- 

les in the batch. 

However, such loss function is non-smooth when optimized 

ith mini-batch sampling caused by the maximum function, which 

ould lead to unstable convergence and bad local optimum. To 

ake more use of the “difficult” triplets and ensure the stability 

f gradients update, we turn to optimize a smooth upper bound 

n Eq. (7) inspired by a recent metric learning work [28] , defined 

s: 

˜ J = 

1 

2 | ̂  P | 
∑ 

(i, j) ∈ ̂  P 

max (0 , ˜ J i, j ) , 

˜ 
 i, j = log 

( ∑ 

(i,k ) ∈ ̂  N 

exp { m − D h (b i , b k ) } 

+ 

∑ 

( j,l) ∈ ̂  N 

exp { m − D h (b j , b l ) } 
)

+ D h (b i , b j ) . 

s.t. b i , b j , b k , b l ∈ { 0 , 1 } r (8) 

From Eq. (8) , it can be seen that the triplet loss ˜ J i, j takes all dis-

imilar pairs into consideration rather than the scarce most “diffi- 

ult” ones in Eq. (7) , which makes the overall loss ˜ J for each batch 

moother. Meanwhile, the exp operator strengthens the contribu- 

ions of those more “difficult” triplets while weakens other “easier”

nes in the summation terms. 

It is noted that there exists the binary constraints in Eq. (8) . 

uch constraints require discretizing the real-valued output (e.g., 

ith signum function). Unfortunately, it is intractable to optimize 

he network via the SGD algorithm with such discrete activation 

unction. For ease of optimization, we replace the Hamming dis- 

ance D h (·) with square of Euclidean distance and relax the binary 

onstraints on b to range constraints. We formulate the relaxed J̃ 
1 Here either of b i or b j could be the anchor point. 

S

6 
s follows: 

˜ J = 

1 

2 | ̂  P | 
∑ 

(i, j) ∈ ̂  P 

max (0 , ˜ J i, j ) , 

˜ 
 i, j = log 

( ∑ 

(i,k ) ∈ ̂  N 

exp { m − D 

2 
e (b i , b k ) } 

+ 

∑ 

( j,l) ∈ ̂  N 

exp { m − D 

2 
e (b j , b l ) } 

)
+ D 

2 
e (b i , b j ) . 

s.t. b i , b j , b k , b l ∈ [0 , 1] r (9) 

here D e denotes the Euclidean distance and the binary con- 

traints on b i , b j , b k and b l are relaxed to range constraints of 0

o 1. 

With Eq. (9) , back-propagation algorithm with mini-batch gra- 

ient descent method is applied to train the network. Specifically, 

e give the gradients of Eq. (9) with respect to the relaxed binary 

ectors as follows: 

∂ ̃  J 

∂D 

2 
e (b i , b j ) 

= 

1 

2 | ̂  P | 1 [ ̃  J i, j > 0] , 

∂ ̃  J 

∂D 

2 
e (b i , b k ) 

= 

1 

2 | ̂  P | 1 [ ̃  J i, j > 0] 
− exp { m − D 

2 
e (b i , b k ) } 

exp { ̃  J i, j − D 

2 
e (b i , b j ) } 

, 

∂ ̃  J 

∂D 

2 
e (b j , b l ) 

= 

1 

2 | ̂  P | 1 [ ̃  J i, j > 0] 
− exp { m − D 

2 
e (b j , b l ) } 

exp { ̃  J i, j − D 

2 
e (b i , b j ) } 

, 

∂D 

2 
e (b i , b j ) 

∂b i 

= 2(b i − b j ) , 
∂D 

2 
e (b i , b k ) 

∂b i 

= 2(b i − b k ) , 

∂D 

2 
e (b i , b j ) 

∂b j 

= 2(b j − b i ) , 
∂D 

2 
e (b j , b l ) 

∂b j 

= 2(b j − b l ) , 

∂D 

2 
e (b i , b k ) 

∂b k 

= 2(b k − b i ) , 
∂D 

2 
e (b j , b l ) 

∂b l 

= 2(b l − b j ) . (10) 

here, 1 [ ·] is the indicator function which equals 1 if the expres- 

ion in the bracket is true and 0 otherwise. As shown in Eq. (10) ,

he gradients of each iteration contain all negative pairs’ informa- 

ion which makes the optimization more stable. 

With such computed gradients over mini-batches, the rest of 

ack-propagation can be run in standard manner. 

.3. Implementation details 

The proposed DVC method is implemented on Caffe plat- 

orm. 2 The CNN feature extraction module in Fig. 2 can be any 

tacked convolutional blocks, considering the difficulty of differ- 

nt datasets, we design two baseline architectures, i.e., the shal- 

ow one and the deep one (detailed architectures can be found in 

he supplementary materials). During training, we set momentum 

o 0.9 and adopt the fixed learning rate policy 10 −4 . The margin 

 in Eq. (9) is empirically set to 1. Other hyper-parameters set- 

ing is shown in Table 1 . The pre-trained model for initializing the 

eep architecture is pre-trained for face recognition task on CA- 

IA Webface dataset [75] . To speed up the training and to handle 

he imbalanced categories distribution, we leverage some training 

ethodologies which are introduced and verified in the supple- 

entary materials. 

. Experiments 

In this section, we first give ablation studies of the frame- 

ork including different video modeling schemes discussed in 

ection 3.1 . Next, comparisons with state-of-the-art methods on 
2 The source code of DVC is available at https://github.com/greatmanqss/DVC . 

https://github.com/greatmanqss/DVC


S. Qiao, R. Wang, S. Shan et al. Pattern Recognition 113 (2021) 107754 

Table 1 

Training hyper-parameters setting for different CNN architectures. 

Network Batch size (videos #) Weight decay Initialization Iterations 

shallow 100 0.004 “Xavier”[76] 30,000 

deep 30 0.0005 pre-trained model 50,000 
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Table 2 

mAP comparison of video modeling schemes with 12-bit binary 

codes. 

DVC-3D DVC-s DVC-a DVC-wa DVC-m 

BBT 0.9759 0.9853 0.9791 0.9876 0.9808 

PB 0.8573 0.9547 0.9552 0.9605 0.9590 

YTC – 0.6423 0.6557 0.6609 0.6719 
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ifferent retrieval scenarios are conducted to illustrate the advan- 

ages of the proposed method. Besides, alternative loss designs dis- 

ussed in Section 2.4 and the effects of frame selection during in- 

erence are also studied in the supplementary materials. 

.1. Datasets and evaluation protocols 

Datasets . The following face video retrieval experiments in this 

aper are conducted on the challenging ICT-TV dataset [34] and 

ouTube Celebrities (YTC) dataset [77] . ICT-TV dataset contains 

wo face video collections clipped from two popular American TV- 

eries, i.e., the Big Bang Theory (BBT) and Prison Break (PB). These 

wo TV-Series are quite different in their filming style and there- 

ore pose different challenges. BBT is a sitcom and most stories 

ake place indoors. Each episode contains 5 ∼8 characters. By con- 

rast, many scenes of PB are taken outdoors with a main cast list 

round 19 characters. Consequently face videos from PB have larger 

ariation of illumination. All the face videos are extracted from the 

hole first season of each TV-Series, i.e., 17 episodes of BBT and 22 

pisodes of PB. The numbers of face videos of these two datasets 

re 4667 and 9435 respectively. YTC is a widely studied and chal- 

enging benchmark containing 1,910 video clips of 47 celebrities 

ollected from YouTube. Specifically, these clips are parsed from 

hree raw videos of each celebrity which have large variations 

ecorded in different scenes. Besides, the video frames are mostly 

ighly compressed, with low resolution and large intra-class varia- 

ions. Some video frames of the three datasets can be found in our 

upplementary materials. Considering the difficulty of datasets, we 

se the shallow network for BBT and PB, and the deep one for YTC 

n the following. 

Training and test protocols . For BBT and PB, with the “un- 

nown” class abandoned, we randomly select 2 
3 of face videos for 

ach character for training and leave the rest for test. For YTC, we 

reat samples from two of the three raw videos of each celebrity 

s training set, and leave the remaining ones as test set. To ensure 

nough videos in a mini-batch with limited memory space, we di- 

ide each long video clips into multiple sub-video clips with fixed 

ength of 10 frames for BBT and PB, and varied length but less 

han 30 frames for YTC. By doing this, we obtain 25,590, 40,941 

nd 7,190 video clips as training set, and 12,735, 20,357 and 3,101 

ideo clips as test set for BBT, PB and YTC respectively. 

Measurements . We evaluate methods via utilizing videos (or 

iddle frame for retrieval across image and video 3 ) in the test set 

s query to retrieve the other videos in the test set as database. For 

uantitative evaluation, mean Average Precision (mAP) and preci- 

ion recall curves are computed on three datasets. 

.2. Ablation study 

Evaluation of video modeling. In this part, we validate the 

ffectiveness of the proposed temporal feature pooling for video 

odeling on the three datasets. We use the same hashing objective 

unction in Eq. (9) and mainly evaluate different video modeling 

chemes discussed in Section 3.1 , i.e. 1) DVC-s : single-frame model 

hich treats each frame as an individual sample and does not in- 

olve any video modeling operation; 2) DVC-3D : 3D CNN model 
3 Unless particularly stated, binary codes for frames are not optimized and exper- 

mental results are reported for video-to-video retrieval task. S

7 
hich conducts 3D convolution across the videos; 3) DVC-a : tem- 

oral average pooling model (a special case of the weighted tem- 

oral average pooling with equal attention for each frame); 4) our 

VC-wa : weighted temporal average-pooling model formulated in 

q. (4) ; and 5) our DVC-m : temporal max-pooling model defined 

n Eq. (1) . The network architectures of DVC-s, DVC-a, DVC-wa , and 

VC-m have been discussed in Section 3.3 . DVC-3D ’s network con- 

guration is similar to them except that the convolution kernels of 

he first convolution layer are 3 × 3 × 3 T where T is the number 

f frames of a face video, each frame has 3 channels and totally 3 T 

hannels in temporal dimension. 4 To obtain a unified binary code 

or each face video, we simply average the codes of the segmented 

ub-videos for DVC-3D, DVC-a, DVC-wa and DVC-m , or all frames 

or DVC-s belonging to that face video. 

The mAP results are listed in Table 2 . There are three conclu- 

ions we can reach: (1). DVC-3D does not perform well on both 

BT and PB. The reason is that DVC-3D is tailored to action recog- 

ition task [74] . The main goal of DVC-3D is to learn both spatial

nd temporal information, which has high request on the network 

apacity. Besides, it abstracts the spatial appearance information 

f multiple frames together in the first convolution layer which 

auses the network to fail to capture the appearance information 

f each frame in the latter layers. Therefore, the appearance infor- 

ation of the face is not learned very well. By contrast, the DVC-s 

nly aims to learn the appearance information for face images, and 

he performance is better than DVC-3D for this task, demonstrates 

he significance of appearance information for face video retrieval 

ask. (2) Our proposed DVC-wa and DVC-m achieve the best per- 

ormance on all the three datasets, which demonstrates the effec- 

iveness of video modeling via either extracting complementary lo- 

al concepts from frames or paying different attentions on frames 

ith different quality. Moreover, the advantages of DVC-wa and 

VC-m over other alternatives become larger with datasets being 

ore challenging. The reason is that from BBT to PB and then to 

TC, samples tend to have larger intra-class variations and worse 

maging condition (the more frequent case in real world videos), 

eading to information carried by different frames more comple- 

entary and the decrease of quality of some frames. Since the 

roposed temporal feature pooling operations are just designed to 

andle such problems, and they achieve expected performance. (3) 

VC-wa performs better than DVC-a . To further analyze the pro- 

osed weighted temporal average-pooling, we show some frames 

ith different attention weights of some video clips in YTC dataset 

n Fig. 4 . It is observed frames with large attention weights usually 

ave better image quality while those with small attention weights 

resent bad image quality caused by large pose, motion blur, etc. 
4 Since length of processed video clips of YTC is varied as introduced in 

ection 4.1 , DVC-3D cannot be applied on YTC. 
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Fig. 4. Video frames with different attention weights on YTC dataset. The left and right two rows belong to one video clip. The first row shows frames with large attentions 

and second row shows those with small attentions. It is observed the attention weights are assigned reasonably according to different image quality cased by pose, motion 

blur, etc. 
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his demonstrates the advantage of involving frames information 

ith different attentions according to their image quality, i.e. their 

istance to the class centers. 

.3. Comparison with the state-of-the-art 

Comparative methods : We compare our DVC with sev- 

ral state-of-the-art hashing methods in recent years, including 

SH [43] , SH [44] , BRE [48] , ITQ [46] , CCA-ITQ [46] , MLH [50] ,

SH [51] , CVC [33] , DLBHC [58] , DNNH [26] , DSH [25] , Hash-

et [64] and SSDH [24] . Strictly speaking, these compared meth- 

ds except CVC are not specifically designed for face video retrieval 

ask. To conduct face video retrieval experiments with them, as 

imilarly done in DVC-s , we trained such methods by treating each 

rame as a sample and finally all the frame-level binary represen- 

ations are fused by hard-voting method as the representation of 

he face video. For fair comparison, DLBHC, DNNH, DSH, HashNet 

nd SSDH used the same network architecture as the DVC-s . Please 

ote that in this case, the DNNH actually is the fully connected 

ersion described in [26] . For evaluating DVC comprehensively, we 

est DVC-s, DVC-m and DVC-wa on all code lengths and datasets. 

Training settings : Due to the limitation of memory, we cannot 

eed all training data to all compared methods. Hence we have to 

andomly select 5K and 10K frames from all training face videos for 

LH and KSH respectively, which costs more than 8GB of mem- 

ry. Parameters of the compared methods are all set based on 

he authors’ suggestions in their original publications. On BBT and 

B datasets, we use the extracted block discrete cosine transfor- 

ation features of face images as used in [33] for all non-deep 

ethods, i.e , methods using hand-crafted features. On YTC dataset, 

ll non-deep methods utilize the image representations of the last 

ooling layer (pool5) in of the pre-trained face recognition model 

hat we used for initializing DVC. Besides, all deep hashing meth- 

ds including DLBHC, DNNH, DSH, HashNet, SSDH and our DVC use 

he finetuning trick that has been proved effective in the supple- 

entary materials. 

Results : Table 3 shows the retrieval performance comparison 

n the three datasets with different code lengths. The precision re- 

all curves can be found in the supplementary materials. In gen- 

ral, supervised hashing methods perform better than unsuper- 

ised methods, validating the importance of label information for 

earning similarity-preserving Hamming space. In addition, those 

eep hashing methods outperform non-deep ones with hand- 

rafted features by a large margin on BBT and PB datasets, while 

he gap becomes small when the non-deep methods are equipped 

ith deep CNN features on YTC dataset, demonstrating the advan- 

age of CNN for image feature learning. We also train some con- 

entional hashing methods with CNN features on BBT and PB, their 

erformance is improved significantly, but still inferior to our DVC. 

etails are introduced in the supplementary materials. 

Apart from above observations, we can see that performance of 

ompared deep hashing methods on BBT is very close to ours be- 
8 
ause face videos in BBT have small intra-class variations. However, 

hen it comes to PB and YTC which are more challenging than 

BT as described in Section 4.1 , the performance gap between our 

ethod and others becomes larger. Such advantages benefit from 

he optimized smooth loss function and video modeling schemes. 

n one hand, DVC leverages the triplet ranking constraints to op- 

imize the local rank among samples, which is more suitable to 

he preservation of the semantic similarity on datasets with larger 

ntra-class variations. Meanwhile, the smooth upper bound on the 

oss function which takes all negative pairs into consideration and 

iases towards triplets with large loss also leads the network to 

onverge stably. By contrast, DLBHC and SSDH focuses on the fi- 

al classification loss which neglects the relative similarity among 

amples, thus encoding dissimilar images to similar codes would 

ot be punished as long as the classification accuracy is unaffected. 

SH and HashNet are based on pairwise discriminative analysis 

hich may not work well in large scale settings. Though the ob- 

ective of DNNH is similar to ours, it gives equal treatment to all 

he triplets in the batch and overwhelms the contributions of tir- 

lets that violate the constraints. As a result, it may converge to 

n undesired local optimal. Benefitting from the designed hashing 

bjective, our DVC-s outperforms these competing deep hashing 

ethods. On the other hand, DVC-m and DVC-wa utilize the tem- 

oral pooling network to represent face video which has the abil- 

ty of making use of more complementary information and paying 

ore attention on frames close to the class center, while compared 

ve deep methods and DVC-s simply average all frame-level binary 

odes, the final video code is unreliable when faces have large vari- 

tions in the video. Therefore, DVC-m and DVC-wa achieve the ex- 

ected better performance on the challenging PB and YTC datasets. 

.4. More retrieval scenarios 

Retrieval across image and video . Apart from the video-to- 

ideo retrieval task evaluated above, using video frame to retrieve 

ideo clips, and using video clips to retrieve images, i.e. the re- 

rieval across image and video, is another popular retrieval appli- 

ation. Therefore, we further compared our DVC with several com- 

etitive hashing methods standing out from Table 3 for such task 

n the more challenging PB and YTC datasets. To be specific, binary 

odes of both video frames and videos for DVC are optimized in a 

ommon Hamming space, as shown in Fig. 2 . Results are shown 

n Table 4 (video-to-image task can be found in the supplemen- 

ary materials). It is observed our method significantly outperforms 

ther methods on such task, validating pretty expansibility of our 

ethod on different retrieval tasks. 

Retrieval across video scenes . In aforementioned experiments, 

he query and gallery face clips may come from the same raw 

ideos. Another practical retrieval scenario is the cross scene link- 

ng, where potentially video of one scene is matched with the 

nes of other scenes. As we have introduced in Section 4.1 , sam- 

les of YTC in the training set and test set are from different 
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Table 3 

Comparison of retrieval mAP between our DVC method and the other hashing methods on different datasets. 

Method 

BBT PB YTC 

12-bit 24-bit 48-bit 12-bit 24-bit 48-bit 12-bit 24-bit 48-bit 

LSH [43] 0.2778 0.3062 0.3679 0.1259 0.1360 0.1412 0.4024 0.6131 0.7813 

SH [44] 0.3745 0.3652 0.3329 0.1403 0.1496 0.1504 0.4514 0.6380 0.7547 

ITQ [46] 0.4771 0.4928 0.4968 0.1414 0.1525 0.1608 0.5665 0.7701 0.8460 

CCA-ITQ [46] 0.7159 0.8141 0.8547 0.1819 0.2312 0.2814 0.5604 0.7703 0.8481 

BRE [48] 0.4275 0.4810 0.4860 0.1423 0.1468 0.1510 0.5242 0.7356 0.8363 

MLH [50] 0.7670 0.8058 0.8402 0.2294 0.2325 0.2783 0.5153 0.7352 0.8586 

KSH [51] 0.8819 0.8830 0.8856 0.3405 0.3840 0.4086 0.5840 0.7605 0.8635 

CVC [33] 0.7784 0.8121 0.8166 0.2767 0.3314 0.3648 0.5345 0.6679 0.7697 

DLBHC [58] 0.9870 0.9914 0.9922 0.9476 0.9498 0.9602 0.6096 0.7244 0.7684 

DNNH [26] 0.9878 0.9884 0.9909 0.9262 0.9306 0.9262 0.6273 0.7501 0.8356 

DSH [25] 0.9858 0.9850 0.9845 0.9414 0.9618 0.9652 0.6368 0.7700 0.8358 

HashNet [64] 0.9746 0.9849 0.9846 0.9234 0.9588 0.9658 0.5874 0.7742 0.8300 

SSDH [24] 0.9849 0.9877 0.9909 0.9327 0.9474 0.9590 0.5962 0.7097 0.8364 

DVC-s 0.9853 0.9933 0.9941 0.9547 0.9663 0.9788 0.6423 0.7842 0.8535 

DVC-wa 0.9876 0.9916 0.9909 0.9605 0.9657 0.9748 0.6609 0.7868 0.8605 

DVC-m 0.9808 0.9926 0.9915 0.9590 0.9707 0.9727 0.6950 0.7828 0.8701 

Table 4 

Comparison of image-to-video retrieval mAP between our DVC method and com- 

petitive hashing methods on different datasets. 

Method 

PB YTC 

12-bit 24-bit 48-bit 12-bit 24-bit 48-bit 

CCA-ITQ [46] 0.8037 0.8991 0.9093 0.4643 0.6697 0.7810 

KSH [51] 0.9019 0.9239 0.9371 0.4957 0.6493 0.7844 

DLBHC [58] 0.9378 0.9419 0.9522 0.5389 0.6486 0.6935 

DNNH [26] 0.9100 0.9161 0.9116 0.5504 0.6669 0.7693 

DSH [25] 0.9272 0.9484 0.9593 0.5535 0.6960 0.7792 

HashNet [64] 0.9119 0.9429 0.9556 0.5181 0.6974 0.7687 

SSDH [24] 0.9220 0.9355 0.9489 0.5402 0.6476 0.7857 

DVC 0.9451 0.9569 0.9703 0.6046 0.7214 0.8060 

Table 5 

mAP comparison of video-to-video retrieval across shooting scenes on different 

datasets. 

Method 

UMDFaces YTC 

12-bit 24-bit 48-bit 12-bit 24-bit 48-bit 

DLBHC [58] 0.3632 0.5194 0.6155 0.5531 0.6370 0.5674 

DNNH [26] 0.3429 0.4722 0.5606 0.5189 0.5869 0.6251 

DSH [25] 0.3426 0.4252 0.4394 0.5101 0.5832 0.5766 

HashNet [64] 0.3178 0.4587 0.5571 0.4340 0.5637 0.6446 

SSDH [24] 0.4720 0.4771 0.5571 0.5486 0.5639 0.6475 

DVC-s 0.3867 0.6252 0.7176 0.5608 0.6488 0.6822 

DVC-m 0.5134 0.6838 0.7329 0.6237 0.6512 0.6852 
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Table 6 

Retrieval mAP on JHMDB dataset for general 

video-to-video retrieval task. 

Method 16-bit 32-bit 64-bit 

PCAH [49] 0.1689 0.1764 0.1830 

ITQ [46] 0.1380 0.1416 0.1444 

AGH [45] 0.1374 0.1430 0.1690 

CCA-ITQ [46] 0.2720 0.3196 0.3144 

KSH [51] 0.2750 0.2832 0.3351 

FastHash [62] 0.3119 0.3372 0.3663 

SSDH [24] 0.3487 0.3744 0.3803 

DVC-s 0.3651 0.3721 0.3727 

DVH [2] 0.3519 0.3743 0.3795 

DVC-a 0.4611 0.4718 0.4672 
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5 mAP of DVH and methods above SSDH in the table is referred to DVH, and 

others are reproduced by ourselves using public released source codes. 
aw videos which are shot in different scenes. Besides, YTC is 

ighly compressed with low resolution and synthetically deterio- 

ated. Apart from YTC, we notice another recently released large 

cale face video dataset called UMDFaces [78] whose face clips are 

lso parsed from several raw video scenes. We randomly select 

00 subjects for experimental evaluation, where 70% raw videos 

f each subject are treated as training set and the remaining ones 

re left as test set. To simulate the cross-scene use case, we use 

he video clips in test set as query to retrieve the training set as 

allery. Comparison results of ours with competitive deep hashing 

ethods are show in Table 5 . It is observed that this retrieval sce-

ario is more difficult than that in Table 3 (e.g. on YTC, the mAP 

rops almost 20 percentages under 48-bit code length). Even so, 

ur DVC still achieves the best results on all bit lengths in such 

se case. 

General video retrieval . Our DVC method is designed for min- 

ng complementary information from videos, which is not limited 

n face video data. Moreover, the proposed loss function in hash 
9 
earning is also a general one. Therefore, our framework can be 

ransferred to general image and video retrieval without many ef- 

orts. In this part, we validate the effectiveness of the whole frame- 

ork on action video retrieval task. Specifically, for action video 

etrieval task, experiments are conducted on JHMDB dataset [79] , 

dopting the same network backbone and training/evaluation set- 

ings with DVH [2] . The mAP results are shown in Table 6 . 5 We

an see that our method achieves significant advantages over state- 

f-the-arts hashing methods on such retrieval task, validating the 

ffectiveness of the proposed loss function and video modeling 

cheme. We also verify the proposed hash learning objective on 

mage retrieval task which is introduced in our supplementary ma- 

erials. 

. Conclusions 

In this paper, we propose a deep video code (DVC) frame- 

ork via the end-to-end CNN architecture, which takes face videos 

s inputs and outputs compact binary codes. The learned DVC 

chieves promising performance in comparison to state-of-the-art 

ashing methods on three challenging face video datasets and two 

eneral image/video datasets for different imagen and video re- 

rieval task. We owe it to three aspects: First , the integration of 

rame-level feature learning, video-level modeling and hash cod- 

ng into a unified framework, which makes the three stages com- 

atible to each other. Second , the optimization of a smooth up- 

er bound on triplet loss function for hash learning avoids model 

onverging unstably or falling into bad local optimal. Third , the 
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esigned video modeling schemes, i.e., the temporal max-pooling 

an mine complementary information from different frames and 

he weighted temporal average pooling aggregates video informa- 

ion via the elaborately devised attention mechanism. Currently, 

he video modeling in our method only involves the first-order 

tatistic of the image set. To further fuse higher-order statistic like 

he second-order pooling would be one of our future research di- 

ections. Besides, we believe that constructing a larger and more 

hallenging face video dataset to study and evaluate more compli- 

ated end-to-end frameworks is also in great demand. 
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